What is metal colloid??

Metal Colloid

- Colloid
 - Suspension of a phase (liquid or solid) in another phase
 - Colloidal particles should be large enough (> 1 nm) and of relatively weak size in order not to settle out (< 1 µm)
- Metal Colloid
 - Suspension of metal nanoparticles in aqueous solution
 - Obtained by synthesizing metal nanoparticles dispersed in liquid phase and stabilization of the product

Metal Nanoparticles

- Metals in nanometer scale (1 100 nm)
- Exhibit some different properties with bulk metals, such as melting points and optical properties
- Can be applied in catalysis, photochemistry, nanoelectronics, or optics

Metal Nanoparticles

• Preparation

- Mechanic subdivision of metallic aggregates (physical method)
- Nucleation and growth of metallic atoms (chemical method)

Metal Nanoparticles

- Phyiscal methods produce particles that:
 - Larger particle sizes
 - Board particle size distribution
 - Not reproducible

- Chemical methods produce particles that:
 - Specific size
 - Well defined surface composition
 - Reproducible synthesis and properties

Synthesis of Metal Nanoparticles

- 1. Chemical Reduction of Metal Salts
 - Reacting metal salts with sodium borohydride
- 2. Thermal, photochemical, or sonochemical decomposition
 - Radiolysis of metal salts
- 3. Ligand reduction and displacement from organometallics
 - Reduction of some zerovalence organometallic complexes

Synthesis of Metal Nanoparticles

- 4. Metal vapor synthesis
 - Co-condensation of metal vapour with organic vapour in non-aqueous media
- 5. Electrochemical reduction
 - Electrolysis with the presence of quaternary ammonium salt

Stabilization of Metal Nanoparticles

- 1. Electrostatic Stabilization
 - Ionic compounds such as halides, carboxylates, or polyoxoanions, dissolved in (generally aqueous) solution
 - Generate an electrical double-layer around the particles to prevent particle aggregation

Stabilization of Metal Nanoparticles

- 2. Steric Stabilization
 - Macromolecules such as polymers or oligomers
 - Adsorb macromolecules at the surfaces of

Stabilization of Metal Nanoparticles

- 3. Electrosteric Stabilization
 - Combination of electrostatic and steric stabilization
 - Ionic surfactants containing a polar headgroup able to generate an electric double layer and a lypophilic side chain able to provide steric repulsion